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Overview

Percolation on Zd (for d > 10, ‘high-dimensional’)

Definition Incipient Infinite Cluster (IIC)

Theorems + idea of proof. Mass dimension of IIC is 4 and volume
growth exponent of IIC is 2, a.s..
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Percolation on Zd

Consider nearest-neighbour Bernoulli bond percolation on Zd , with
parameter p ∈ [0, 1] and measure Pp.

Definition. Connected vertices.

{x ↔ y} := {x connected to y by a path of open edges }

Definition. Open cluster of x ∈ Zd .

C(x) :=
{
y ∈ Zd : x ↔ y

}
Definition. Critical probability.

pc := inf {p : Pp (|C(0)| =∞) > 0}
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What happens at the critical probability?

Phase transition in pc :

Pp

(
∃x ∈ Zd s.t. |C(x)| =∞

)
=

{
0 if p < pc

1 if p > pc .

What happens if p = pc?

Ppc (. . .) = 0 if d = 2 or d > 10.

Informally, the Incipient Infinite Cluster (IIC) is the critical cluster C(0)
“conditioned on the event that |C(0)| =∞”.
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Intermezzo: high dimensions

Definition. High dimensions.

The model is called high-dimensional if the dimension d of Zd is > 6 and
satisfies the following. There are constants c ,C > 0 s.t. for all x , y ∈ Zd

c · ‖x − y‖2−d ≤ Ppc (x ↔ y) ≤ C · ‖x − y‖2−d .

True for d > 18 [e.g. Hara, 2008] and d > 10 [vd Hofstad, Fitzner, 2015].
Believed to be true for d > 6.
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Incipient Infinite Cluster

Recall, Ppc (|C(0)| =∞) = 0 in h.d.. But now “condition on |C(0)| =∞”.
Need new probability measure to make this precise.

Definition IIC measure

For cylinder events E ,

PIIC(E ) := lim
|x |→∞

Ppc (E | 0↔ x) .

In h.d., this can be extended to a well defined measure [Heydenreich, vd
Hofstad, Hulshof, 2014].

Definition IIC.

IIC := C(0).
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Cube of radius r intersected with IIC

Qr ∩ IIC :=
{
x ∈ Zd : 0↔ x and ‖x‖∞ ≤ r

}
Random ball of radius r .

Br :=
{
x ∈ Zd : 0↔ x and dIIC(0, x) ≤ r

}
Mass dimension of IIC

dm(IIC) := lim
r→∞

(
log |Qr ∩ IIC|

log(r)

)

Volume growth exponent of IIC

df (IIC) := lim
r→∞

(
log |Br |
log(r)

)
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How (infinitely) large is IIC under PIIC?

Theorem 1 [C, 2015]

In h.d. (d > 10),

PIIC

(
dm(IIC) := lim

r→∞

(
log |Qr ∩ IIC|

log(r)

)
= 4

)
= 1.

So IIC is 4-dimensional with respect to the ‘extrinsic’ distance of the
surrounding lattice Zd .

Theorem 2 [C, 2015]

In h.d. (d > 10),

PIIC

(
df (IIC) := lim

r→∞

(
log |Br |
log(r)

)
= 2

)
= 1.

So IIC is 2-dimensional with respect to the ‘intrinsic’ graph distance.
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Proof idea Theorem 1. Upper bound.

Upper bound is not the problem. Follows from

EIIC|Qr ∩ IIC| ≤ C · r4

[e.g. vd Hofstad, Járai, 2004], combined with Markov’s inequality and
Borel-Cantelli.
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Proof idea Theorem 1. Lower bound.

For the lower bound, results from literature [Kozma, Nachmias, 2009,
2011; vd Hofstad, Sapozhnikov, 2014] are used to obtain (roughly):

dIIC(0, ∂Qr ) ≈ r2 and |Br | ≈ r2.

Furthermore, Qr ∩ IIC ⊇ BdIIC(0,∂Qr ). So

Heuristic

|Qr ∩ IIC| ≥ |BdIIC(0,∂Qr )| ≈ |Br2 | ≈ (r2)2 = r4.

Remark: perhaps the most important ingredient from literature is

Ppc (0↔ ∂Qr ) ≤ C · 1

r2
.
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Visualisation Qr ∩ IIC ⊇ BdIIC(0,∂Qr )

IIC = red+blue+black ;
Qr ∩ IIC = red+blue;
BdIIC(0,∂Qr ) = red.

Wouter Cames van Batenburg (RU) Dimension of IIC
Lausanne, August 4 or 6, 2015 11 /

15



Conjecture

Write ∂Qr = Qr\Qr−1 and let 0
Qr←→ x denote the event that 0 is

connected to x by an open path that stays in Qr .
Expect that PIIC− a.s.,

(i) # {x ∈ ∂Qr | 0←→ x} � r3

(ii) #
{
x ∈ ∂Qr | 0

Qr←→ x
}
� r2

Lower bound for (ii) OK, upper bound for (i) OK.
Difficulty upper bound (ii): while we know that Ppc (0←→ x) � ‖x‖2−d ,

the behaviour of Ppc

(
0

Qr←→ x
)

is not known accurately enough. In

particular: depends on more than just the norm of x .
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Summary

Intuitively, the IIC is a critical cluster ‘as it is becoming infinitely
large’.

In high dimensions (d > 10, expected d > 6), its mass dimension
equals 4 and its volume growth exponent equals 2, PIIC-a.s..

At the boundary of a cube of radius r , it seems there are ≈ r3 vertices
that are connected to the origin but only ≈ r2 vertices that are
connected to the origin by a path that stays inside the cube, PIIC-a.s..
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Extended proof scheme lower bound (including proofs in
literature)

PIIC

(
|Qr ∩ IIC| ≥ λ · r4

)
≤ C · 1λ

PIIC

(
0
≤εr2←→ ∂Qr

)
≤ C ·

√
ε PIIC

(
|Br | ≤ 1

λ r
2
)
≤ C · 1λ

Ppc (0↔ ∂Qr ) ≤ C · 1
r2 Ppc (Br\Br−1 6= ∅) ≤ C · 1r

Epc (|Br |) ≤ C · r Ppc (|C(0)| ≥ r) ≤ C · 1√
r

6 6

6

I

6

6
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