The dimension of the Incipient Infinite Cluster

Wouter Cames van Batenburg

Radboud Universiteit

w.camesvanbatenburg@math.ru.nl

Lausanne, August 4 or 6, 2015

 QQ

- Percolation on \mathbb{Z}^d (for $d>10$, 'high-dimensional')
- Definition Incipient Infinite Cluster (IIC)
- \bullet Theorems $+$ idea of proof. Mass dimension of IIC is 4 and volume growth exponent of IIC is 2, a.s..

つひひ

Consider nearest-neighbour Bernoulli bond percolation on \mathbb{Z}^d , with parameter $p \in [0, 1]$ and measure \mathbb{P}_p .

Definition. Connected vertices.

 $\{x \leftrightarrow y\} := \{x \text{ connected to } y \text{ by a path of } open \text{ edges }\}$

Definition. Open cluster of $x \in \mathbb{Z}^d$.

$$
\mathcal{C}(x) := \left\{ y \in \mathbb{Z}^d : x \leftrightarrow y \right\}
$$

Definition. Critical probability.

$$
p_c := \inf \{ p : \mathbb{P}_p(|\mathcal{C}(0)| = \infty) > 0 \}
$$

 299

Phase transition in p_c :

$$
\mathbb{P}_{p}\left(\exists x\in\mathbb{Z}^{d}\text{ s.t. }|\mathcal{C}(x)|=\infty\right)=\begin{cases}0 & \text{if }pp_{c}.\end{cases}
$$

What happens if $p = p_c$?

$$
\mathbb{P}_{p_c}(\ldots)=0 \text{ if } d=2 \text{ or } d>10.
$$

Informally, the Incipient Infinite Cluster (IIC) is the critical cluster $C(0)$ "conditioned on the event that $|C(0)| = \infty$ ".

つひひ

Definition. High dimensions.

The model is called *high-dimensional* if the dimension d of \mathbb{Z}^d is $>$ 6 and satisfies the following. There are constants $c, \overline{C}>0$ s.t. for all $x,y\in\mathbb{Z}^d$

$$
c\cdot ||x-y||^{2-d} \leq \mathbb{P}_{p_c}(x \leftrightarrow y) \leq C\cdot ||x-y||^{2-d}.
$$

True for $d > 18$ [e.g. Hara, 2008] and $d > 10$ [vd Hofstad, Fitzner, 2015]. Believed to be true for $d > 6$.

 Ω

Incipient Infinite Cluster

Recall, $\mathbb{P}_{\rho_c} \left(|\mathcal{C}(0)|=\infty \right) = 0$ in h.d.. But now "condition on $|\mathcal{C}(0)|=\infty$ ". Need new probability measure to make this precise.

Definition IIC measure

For cylinder events E,

$$
\mathbb{P}_{\mathsf{IIC}}(E) := \lim_{|x| \to \infty} \mathbb{P}_{p_c}(E \mid 0 \leftrightarrow x).
$$

In h.d., this can be extended to a well defined measure [Heydenreich, vd Hofstad, Hulshof, 2014].

Definition IIC.

$$
\mathsf{HC}:=\mathcal{C}(0).
$$

Wouter Cames van Batenburg (RU) [Dimension of IIC](#page-0-0) Lausanne, August 4 or 6, 2015 6 / 15

 QQQ

Cube of radius r intersected with IIC

$$
Q_r \cap \mathsf{IIC} := \left\{ x \in \mathbb{Z}^d : 0 \leftrightarrow x \text{ and } ||x||_{\infty} \le r \right\}
$$

Random ball of radius r.

$$
B_r := \left\{ x \in \mathbb{Z}^d : 0 \leftrightarrow x \text{ and } d_{\mathsf{HC}}(0,x) \leq r \right\}
$$

Mass dimension of IIC

$$
d_m(\mathsf{IIC}) := \lim_{r \to \infty} \left(\frac{\log |Q_r \cap \mathsf{IIC}|}{\log(r)} \right)
$$

Volume growth exponent of IIC

$$
d_f(\mathsf{IIC}) := \lim_{r \to \infty} \left(\frac{\log |B_r|}{\log(r)} \right)
$$

Wouter Cames van Batenburg (RU) [Dimension of IIC](#page-0-0) Lausanne, August 4 or 6, 2015 7 / 15

 \leftarrow \Box \rightarrow \leftarrow \Box

 QQ

How (infinitely) large is IIC under \mathbb{P}_{HC} ?

Theorem 1 [C, 2015]

In h.d. $(d > 10)$,

$$
\mathbb{P}_{\mathsf{IIC}}\left(d_m(\mathsf{IIC}) := \lim_{r \to \infty} \left(\frac{\log |Q_r \cap \mathsf{IIC}|}{\log(r)}\right) = 4\right) = 1.
$$

So IIC is 4-dimensional with respect to the 'extrinsic' distance of the surrounding lattice \mathbb{Z}^d .

Theorem 2 [C, 2015]

In h.d. $(d > 10)$,

$$
\mathbb{P}_{\mathsf{IIC}}\left(d_f(\mathsf{IIC}):=\lim_{r\to\infty}\left(\frac{\log|B_r|}{\log(r)}\right)=2\right)=1.
$$

So IIC is 2-dimensional with respect to the 'intrinsic' graph distance.

4 0 8

 $2Q$

Upper bound is not the problem. Follows from

 $\mathbb{E}_{\mathsf{HC}}|Q_r\cap\mathsf{HC}|\leq \mathsf{C}\cdot r^4$

[e.g. vd Hofstad, Járai, 2004], combined with Markov's inequality and Borel-Cantelli.

 QQ

For the lower bound, results from literature [Kozma, Nachmias, 2009, 2011; vd Hofstad, Sapozhnikov, 2014] are used to obtain (roughly):

$$
d_{\text{HC}}(0, \partial Q_r) \approx r^2
$$
 and $|B_r| \approx r^2$.

Furthermore, $Q_r \cap \mathsf{IIC} \supseteq B_{d_{\mathsf{IIC}}(0, \partial Q_r)}.$ So

Heuristic

$$
|Q_r \cap \text{IIC}| \geq |B_{d_{\text{IIC}}(0,\partial Q_r)}| \approx |B_{r^2}| \approx (r^2)^2 = r^4.
$$

Remark: perhaps the most important ingredient from literature is

$$
\mathbb{P}_{\rho_c} (0 \leftrightarrow \partial Q_r) \leq C \cdot \frac{1}{r^2}.
$$

K ロ ▶ K @ ▶ K 및 ▶ K 및 ▶ - 및 - K) Q Q @

Visualisation $Q_r \cap \overline{\text{HC}} \supseteq B_{d_{\text{HC}}(0, \partial Q_r)}$

 $\mathsf{IIC} = \mathsf{red} + \mathsf{blue} + \mathsf{black}$; $Q_r \cap \text{HC} = \text{red+blue}$; $B_{d\text{IIC}}(0,\partial Q_r) = \text{red}.$

Write $\partial Q_r = Q_r \backslash Q_{r-1}$ and let 0 $\stackrel{Q_r}{\longleftrightarrow} x$ denote the event that 0 is connected to x by an open path that stays in Q_r . Expect that \mathbb{P}_{IIC} – a.s.,

(i)
$$
\# \{x \in \partial Q_r | 0 \longleftrightarrow x\} \asymp r^3
$$

(ii) $\# \{x \in \partial Q_r | 0 \longleftrightarrow x\} \asymp r^2$

Lower bound for (ii) OK, upper bound for (i) OK. Difficulty upper bound (ii): while we know that $\mathbb{P}_{p_c}(0 \longleftrightarrow x) \asymp \|x\|^{2-d}$, the behaviour of $\mathbb{P}_{\rho_c}\left(0\stackrel{Q_r}{\longleftrightarrow}\chi\right)$ is not known accurately enough. In particular: depends on more than just the norm of x .

Kロメ(個) Kミメ(ミ) - ミーのRC

- Intuitively, the IIC is a critical cluster 'as it is becoming infinitely large'.
- In high dimensions ($d > 10$, expected $d > 6$), its mass dimension equals 4 and its volume growth exponent equals 2, \mathbb{P}_{HC} -a.s..
- At the boundary of a cube of radius $r,$ it seems there are $\approx r^3$ vertices that are connected to the origin but only \approx r 2 vertices that are connected to the origin by a path that stays inside the cube, \mathbb{P}_{IIC} -a.s..

[L](#page-11-0)[aus](#page-12-0)[an](#page-13-0)[ne](#page-1-0)[,](#page-2-0) [Augu](#page-14-0)[st](#page-1-0) [4](#page-2-0) [or](#page-14-0) [6, 2](#page-0-0)[015](#page-14-0) 13 / 2015 13 / 2015 13 / 2015 13 / 2015 13 / 2015 13 / 2015 13 / 2015 13 / 2015

References

-
- W. Cames van Batenburg. The dimension of the Incipient Infinite Cluster. Electron. Commun. Probab. 20(33):1-10, (2015).
- T. Hara. Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann.Probab., 36(2):530-593, (2008).
- 晶 M. Heydenreich, R. v.d. Hofstad and T. Hulshof. High-dimensional incipient infinite clusters revisited. J.Stat.Phys., 155(5):966-1025, (2014).
- 讀 R. v.d. Hofstad and A. Járai. The incipient infinite cluster for high-dimensional unoriented percolation. J.Statist.Phys., 114(3-4):625-663, (2004).
- Ħ R. v.d. Hofstad and A. Sapozhnikov. Cycle structure of percolation on high-dimensional tori. Ann. Inst. H. Poincaré Probab. Statist., (2014).
- F G. Kozma and A. Nachmias. Arm exponents in high-dimensional percolation. J.Amer.Math.Soc., 24:375-409, (2011).
	- G. Kozma and A. Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent.Math., 178:635-654, (2009).

[L](#page-12-0)[aus](#page-13-0)[an](#page-14-0)[ne](#page-1-0)[,](#page-2-0) [Augu](#page-14-0)[st](#page-1-0) [4](#page-2-0) [or](#page-14-0) [6, 2](#page-0-0)[015](#page-14-0) 14 /

Extended proof scheme lower bound (including proofs in literature)

